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ABSTRACT: An explicit numerical approximation of the inertial equation governing pump speed changes is
shown to have many computational advantages over the conventional implicit approach when modeling complex
pumping stations. The pump boundary condition is numerically decoupled from the transient time step by solving
the first-order differential torque equation explicitly. A step-by-step finite difference method is used to integrate
the torque equation, but the energy equation is solved separately by Newton’s method. The explicit approach is
demonstrated on a simple forcemain and shows good agreement with the conventional implicit approach. Ap-
plications show the ease with which complex and variable speed pumping arrangements are efficiently modeled
using the explicit approach. In particular, the explicit approach does not require: (1) contraction of the system
of equations as a decelerating pump is eliminated upon pump check valve closure; (2) expansion of the system
of equations as an accelerating pump comes up to speed; or (3) dedicated code for combinations of operating,

failing, or speed-changing pumps.

INTRODUCTION

This paper reviews the explicit formulation of the pump
boundary condition first presented by Streeter (1969) and con-
trasts it with the conventional implicit approach. In general,
the explicit approach is subject to the same inaccuracies and
uncertainties as the implicit approach. Therefore, the explicit
approach realizes the same advantages and disadvantages with
respect to comparison of computed and measured results.
Rather the benefits, although significant, are purely computa-
tional and until now have largely been ignored. Due to its
simplified bookkeeping, relating to soft starting and stopping
of pumps, the explicit approach is particularly helpful when
modeling complex and variable speed pumping arrangements.
To set these developments in context, a brief review of the
pump boundary condition mathematical formulation, as it ap-
plies to the method of characteristics (MOC), is appropriate.

DEVELOPMENT OF PUMP BOUNDARY CONDITION

The energy equation requires that the sum of the suction
head Hs and the dynamic head of the pump H, equal the sum
of the head losses at the pump valves H, and the discharge
head Hp. In symbols, the energy equation is

FR,=Hs+ Ho— H,— H,=0 (1)

in which H, = dynamic head of pump and is a function of
relative pump speed o = N/N, and relative pump discharge v
= Q/Qg; suction and discharge heads A5 and Hj are defined
by the MOC characteristic equations (see Karney and Mclnnis
[1992]); O = pump discharge; Q = rated pump discharge; Ng
= rated pump rotational speed; and N = pump rotational speed.
The value of N is calculated directly from the angular speed
 as

N =30 w/m )

Using the standard methods of Chaudhry (1987) or Wylie and
Streeter (1993), the dynamic head of the pump is represented
as

Hp = Hp(a® + v¥)(a, + a, tan"'a/v) ?3)
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in which a, and g, are interpolation constants and Hj = rated
pump head. However, the particular form of representing H,
= f(a, v) is often left to the convenience of the modeler, and
many other methods have also been suggested (e.g., from sim-
ple interpolation to Fourier series).

When the decelerating torque T is assumed to be positive
for a pump power failure, the rotational inertia of the pump is
described by

~T/I = dwl/dt = f(w, v) @)

where I = rotational inertia of pump impeller, entrained fluid,
shaft, and rotor of driver, and ¢ = time. The torque on the pump
shaft is defined by T = BT, where T = rated torque of pump
and @ is interpolated from a dimensionless representation of
the torque characteristic (Wylie and Streeter 1993). The im-
plicit solution of (4) is thoroughly described by Wylie and
Streeter (1993) and Chaudhry (1987). For completeness, the
explicit solution of (4), first suggested by Streeter (1969), is
reviewed and extended here.

EXPLICIT APPROACH

A second-order explicit approximation of w is obtained by
writing the modified Euler equation in terms of ®. At any time
1, the angular speed of the impeller is explicitly defined as

w = wo + Al2[ flwo, vo) + flwi, V)] )

where subscripts 0 and 1 represent the values of each variable
measured at time ¢ — At and ¢, respectively, and primed var-
iables represent the predicted quantities at the end of the time
step. The predicted relative discharge v] is obtained from a
Newton’s method solution of the energy equation at time ¢
where the predicted angular speed is defined as

®] = wy + At (W, W) (6)

in which wy = mNR/30. More specifically, after obtaining the
relative speed using o = 30 w;/mNg, the predicted relative
discharge is computed by repeatedly evaluating (1) with dif-
ferent estimates of v. After each iteration, the estimate of v is
adjusted by a correction factor V,,, defined as

Veor = —;ﬁ, )
where, from the differentiation of (1) and (3), dF,/dv is
dF,/dv = Hx[2Wa, + a, tan"'a/v) — a,a)

— dH,/dv + d(Hs; — Hp)/dv (8)

The value of v; is determined when the absolute difference
between successive estimates of v is less than a specified tol-

JOURNAL OF HYDRAULIC ENGINEERING / MARCH 1998 / 301



